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1. INTRODLUCrON

The bootstrap (Efron (1979)) is a resampling technique for nonpara-

metrically modeling the distribution of a general statistic Tn = T(6n;F ),

where 9'n = (X1 ... 9Xn) is a random sample of size n from a population

distribution F. Bootstrap "replicates" T = T (m ;F ) of the statistic are
n m m nn n

generated by resampling m = (Y1 ... SYm ) from the empirical distribution Fn of

n n

{X19 .... Xn}, i.e., the Yi's are conditionally iid with distribution having mass

lat each of the points X1 , ...,OXn. The conditional distribution $(T*]0n),

which is necessarily random, is intended to approximate the true nonrandom

distribution V(Tn).

In the present paper we deal only with the simplest statistic Tn, the

standardized sample mean. The sample mean is the easiest statistic to handle

analytically, and if the bootstrap algorithm fails for this simple statistic,

we cannot expect it to succeed for more complex statistics. Our work is

motivated by the results of Bickel and Freedman (1981), Singh (1981), Athreya

(1986a,b, 1987a,b), Gin6 and Zinn (1990a,b), Arcones and Gin6 (1989), Hall

(1990), and Knight (1989).

We denote by Hn(x) the conditional distribution function of Tn given n

Hn(x) = P(T* x I n) , where T"  = a-Y n is the bootstrap version ofnn n an .i=lYi-cn

the sample mean with possibly data-driven scaling a and centering c c =
n n n n

when F has finite mean, and otherwise cn = 0), and with (nonrandom) resample

size mn (which may differ from the original sample size n). As Hn(x) is a

random distribution function, several modes of convergence are possible (such

as convergence a.s., in probability, in law), and the limit may be random or

nonrandom. We judge the performance of the bootstrap by asymptotically
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comparing Hn to , the limiting distribution of the standardized sample mean

nn
T n. We now review some of the known results on the bootstrap. Each of these

results involves specific assumptions on an and cn, for which the reader is

referred to the original papers.

A. (Sufficient conditions.)

(A.1) (Bickel and Freedman (1981)) If F has finite variance and mrn --+ co

then

sup IHn(x ) - i(x) 1 0;
xEIR n

here V. is the standard normal distribution.

(A.2) (Arcones and Gin6 (1989)) If F belongs to the domain of attraction

of the normal law and m --+ w, then

sup In(x) - V (x)l o-P-+ 0;

here V,, is the standard normal distribution. (See Athreya (1987b) for m n=n.)

(A.3) If F belongs to the donmain of attraction of an a-stable law, O<a<2,

then

(i) (Athreya (1987a)) if mn=n, the bootstrap fails (in fact Hn (x)

converges in law to a random distribution which differs from V., an a-stable

distribution);

(ii) (Athreya (1987b)) if mn/n --+ 0, the bootstrap works in probability,

i.e., the conclusion of (A.2) holds with an a-stable law V.;

(iii) (Arcones rind Gin6 (1989)) if (mn/n) loglog n --, 0, the bootstrap

works a.s., i.e., the conclusion of (A.1) holds with an a-stable law s.

(A.4) (Hall (1990)) If F has slowly varying tails and one tail completely

dominates the other, and mn=n, then the bootstrap fails (in fact Hn converges
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in probability to a nonrandom Poisson distribution).

B. (Necessary conditions.)

(B.1) (Arcones and Gin6 (1989)) If inf mn/n > 0 and for some possibly

random distribution H(x),

Hn) no H(-) a.s.

then F has finite variance, and H is V (the standard normal distribution).

(See Gin6 ana Zinn (1990b) for mn=n).

(B.2) (Arcones and Gin6 (1989)) If m n-- , an are nonrandom, and for

some possibly random distribution H(x),

Hn(-) nw -H(*) in probability,

then F belongs to some domain of partial attraction and H is V. (an infinitely

divisible distribution). If furthermore lim infn_ mn/n > 0, then F belongs to

the domain of attraction of a normal law, and H is s (the standard normal

distribution).

(B.3) (Hall (1990)) If mn=n, an are possibly random, and for some

nonrandom distribution H(x),

Hn (-) ---4H() in probability (at continuity points of H),
n-4w

then either F belongs to the domain of attraction of a normal law and H is V

(the standard normal distribution), or F has slowly varying tails with one tail

completely dominating the other and H is a Poisson distribution.

Our interest is to extract information from H n in the broadest possible

setting, i.e., with minimal restrictions on the underlying distribution F, the

resample size m , and the standardization a nand c n , and allowing the weakest
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form of convergence (in law) to a possibly random limit. Our goal is to

classify all possible limiting distributions, and then to eliminate any

randomness in the limit.

When F is general with infinite variance,-assuming nonrandom a n , we give

in Section 2 necessary and sufficient conditions for weak convergence of the

finite dimensional distributions of {Hn(x), -o(x<w}, and we classify all

possible limits. The result (Theorem 1) shows that Hn may have a limit even

when the sample mean does not, and that the limit of H is always infinitelyn

divisible with possibly random L6vy measure, depending on the choice of the

resample size m n.

For the case where H n(x) has a random limit, we introduce in Section 3 an

averaged-bootstrap algorithm and show in Theorem 2 that the averaged-bootstrap

distribution converges a.s. to a nonrandom limit, 0(x), vhich is the expected

value of the random limit of Hn (x). If C contains useful information about V101

then averaged-bootstrap resampling is useful, i.e., bootstrap resampling is

still worthwhile on the average.

In SciQn 4 we apply these results to population distributions in the

domain of attraction of a stable law. We show that the random limiting

distribution of Hn (x) obtained by Athreya (1987a) with a data-based scaling, is

not stable even on the average (Theorem 4). However, with a nonrandom scaling,

the averaged bootstrap actually yields a stable distribution with the same

index as T.0 but with possibly different skewness and scale parameters (Theorem

5). Appropriately adju.sted, the averaged-bootstrap algorithm works a.s. in

some cases, i.e., yields the correct skewness and scale of V. (Theorems 6 and

7). Moreover the limit distribution 0 of the averaged bootstrap is stable if

and only if F belongs to the domain of (partial) attraction of a stable law

(Theorem 8).
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2., GENERAL POPULATION DISTRIBUTION WITH INFINITE VARIANCE

A fundamental question is: What are the possible limits of the

bootstrapped conditional distribution T(t*l X ) when we do not have any

restriction on the population distribution F, the resample size mn, and the

scaling a . We consider on the one hand general population distributions F

with infinite variance (i.e., without the domain of attraction restriction of

results A), and on the other hand we allow general resample size mn and

convergence in distribution of Hn (rather than the more restrictive a.s. or in

probability convergence of results B).

The following theorem gives necessary and sufficient conditions,

explicitly in terms of the univariate distribution F of X, for the convergence

in law of Se(Tn*I1n) and describes the possible limits.

Theorem 1. Assume the population distribution F has infinite variance, an is

nonrandom,

(1.0) mn a , ma 2 -- 0 as n-.,

and when F has finite mean, assume furthermore

(1.1) lim lim n P{lXl > an max(M,an/m)} = 0 for all a > 0,
M-90 n-n

(1.2) lim lim mn a-1E{ IXII( Xi Man, lx - ea n/mn)} = 0 for some a > 0.
M-*e n- nn

Then

(1.3) {Hn(xl)....,H(xk)} n-T {H(xl). ..,H(xk)}

for some possibly random distribution function H(x), any integer k and

xI ....,xk 6 , if and only if the following three conditions (l.a)-(l.c) are

satisfied:

(1.a) There exists a L6vy measure X, such that for all y>O,
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lir MnP(anlX > y) = X[yc)
n-s if mAn - C C

lm inP(a 1X <-y) 
= (-m,-y] n

lim n P(Jllxl > y) = 0 if li rn/n > 0, rn/n -4 c [,0),
n= n n-n

or

limM P(anlX > y) = 0 if 0 = limm /n < lim mm/n.
n-so n n-% n n- n

(1.b) There exists a L6vy measure v on (0,w) such that

lrm lim n P(lXl I a, IxI > a) = :5,
a-C n-pn

for every 6 > 0 such that v{6} = 0.

.(l.c) For all 5 > 0 such that v{6} = 0, there exists a5 such that

lrn lrn m a2 E{X2IEIXg K a min(e.v'6nrn aj 2

In this case, the possibly random characteristic function ( corresponding

to H(-) is

1 22 c itx rnexp {- j t a + f_ [e t-l-itT(x)]dCL\x) } if n -+,

(1.4) pH(t) = exp{- 1t a + cC O [e -1-itT(X)]dN(x) ) if n C (0,00),

exp{- ta2 t2W otherwise,

where a2 = limrno a2, T(x) = x if F has finite mean, and T(x) =0 otherwise, N

is a Poisson random measure with intensity measure c-lX, a2+W 0., and the

characteristic function oW(u) of W is exp{fo(eiuC-l)dv(x)}. Furthermore, the

expected value G(x) of H(x) has characteristic function f,(t) (= Eqp1(t)) which

is always infinitely divisible with the following form
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(15 xf-1.t2 a2 +S oei tXl-itT(x)]dX (x) }if n -- 0,(1.5) exp{- 12a + it Ifl_

p,(t)= exp{- 2 t2 + c-Jf.{exp[c~e tX-l-itT(x))] - 1}dX(x)} if n _ cc(O,o )

1 22
exp{- t a } Eexp{- otherwise.

Theorem 1 classifies all possible weak limits of V(T*ICn). They are

either the law of an independent sum of a Gaussian r.v. and a compound Poisson

r.v. with possibly random L6vy measure, or else the law of an infinitely

divisible scale mixture of a Gaussian r.v., i.e., a Gaussian law with zero mean

and random infinitely divisible variance. The (possibly random) variance of

the Gaussian component and the L6vy measure of the compound Poisson component

depend on the choice of resample size and standardization.

Conditions (1.1) - (1.2) ensure that the tails of the integrals in (1.4)

when F has finite mean are eventually negligible. The Gaussian component of

the limit has variance a2 determined by the asymptotic behavior of a certain

truncated second moment of F, described in (1.c). The compound Poisson

component of the limit is determined by the tail behavior of F described in

(l.a). And the Gaussian mixture has an infinitely divisible variance whose

L6vy measure v is determined by the asymptotic behavior of a certain truncated

probability described in (1.b).

The form of the limits (1.4) and (1.5) can be interpreted as follows. The

bootstrap resample comes from the empirical distribution F n . If we take the

resample size mn much smaller than the original sample size n (mn/n -- 0), then

from the perspective of the resample 1m (mn large), Fn is essentially like the
n

nonrandom population distribution F. Thus the distribution of the bootstrapped

sample mean will yield a deterministic limit if it exists (as in (1.4)). This

phenomenon appears in the literature in other contexts (see Bretagnolle (1983)



and Swanepoel (1986)).

Another interesting effect arises from the fact that Fn has finite support

(trivially symmetric tails). If we take the resample size mn much larger than

the original sample size n (m nn --4 w), then OJ m is like a very large sample
h

from Fn (rather than F). Hence the structure of Fn (symmetric tails) will be

reflected in the limiting distribution H, which indeed is always symmetric in

this case (provided it exists).

Under conditions (1.a)-(1.c), the limit H, or its expected value G, may

contain some information about V.. This suggests that Hn. or its expected

value EHn may contain some information about V(Tn). In Section 3, we develop

the averaged-bootstrap algorithm in order to extract this information.

There are many distribution functions with infinite variance whi-., do not

belong to the domain of attraction of any stable law, i.e., whose sample mean

does not have a limiting distribution. Theorem 1 suggests the existence of a

limit for V(T *JO) in some such cases.

3. AVERAGED BCfSTRAP

In Section 2 we have classified all possible limiting (cone ional)

distributions of TO. It is clear from Theorem 1 that the limits may be random,
n

and therefore different from the nonrandom limit 1 of V(Tn) when it exists,

e.g., when F belongs to some stable domain of attraction. The question arises:

How can we extract useful information about V.? For this purpose we now

introduce the averaged-bootstrap algorithm.

Partition the data set into n blocks, each having kn observations,

n=nkn , as follows:

3 = (X 1,.. 'Xk +1" X2k . (9 -1)k +.. . . ..... X k

n n n n n
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Instead of bootstrapping the entire sample n to obtain TX= -l.m n (Yic wenn an i=l Yi-Cn)w

apply the bootstrap algoritlm within each block j=l ..... en to obtain a

block-bootstrapped version of the sample mean

1 
k

jnk i=1 3i jck)n

where {YI l1 imk } are resampled from the Jth block J% , i.e., they are
n n

conditionally independent with common distribution

P(JY1 = X(j-1)kn+i I Jk) = 1k- h

The conditional distribution of the block-bootstrapped sample mean is

ikn

denoted by

jH k(x) = P(JTk n x I j% ).

In T= we use c X if F has finite mean, c = 0 otherwise; and in we use

n- n thn tn

jck n=jXk (the sample mean in the j block) if F has finite mean, jckn = 0

otherwise. For a data-driven scaling, we use jak = (j n Tk

analogously to using a = a(!X in IX.
n n n n~

Note that {jH kn (x), ljen} are iid random distributions; their average is
n

denoted by

H(x) =1- JHn e n J= j=k(X

and is referred to as the averaged-bootstrap distribution.

We now show that the averaged-bootstrap algorithm converges a.s. when the

standard bootstrap algorithm converges in law (the weakest possible mode).
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Theorem 2. If e n n , 0<6<1, and for each x C IR,

H (x) -s +H(x),
nl4D

where H(x) is a possibly random distribution function, then for each x C M

1(x) - -- G(x),

where G(x) = EH(x). Furthermore if G(x) is continuous, then the convergence is

uniform in x.

Thus the averaged-bootstrap algorithm produces a nonrandom limiting

distribution G(x), and it is of interest to investigate the relationship

between G and . If G and V. agree, then the averaged bootstrap works a.s.

and Hn contains useful information about (T).
nn

4..APPLicArioNS TO POPULATION DISTRIBUTIONS IN DOMAINS OF ATIRACrlON

In this section we apply Theorems 1 and 2 to population distributions in

the domain of attraction of a stable law. Each of the stated results (except

Theorem 3) includes two parts. First we establish convergence of the random

distribution Hn(x) to a possibly random limiting distribution H(x), using

Theorem 1 when appropriate. Secondly, an explicit expression for G(x) = EH(x)

is obtained, again using Theorem 1. By comparing G with se, we can in each

case determine whether the averaged bootstrap (Hn) is of any practical use (via

Theorem 2).

Before stating our results we briefly review the stable laws S(a,,s) with

index a C (0,2], skewness P 6 [-1,1], scale parameter s 1 0 (the actual scale
i1/dis s ; here for simplicity we use s instead,~ and characteristic function:
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[ exp{-sltlaEl - iPtan(a/2)sgn(t)] }, a A 1.
4p(t) 2

exp{-sltl[1 + ip( )logltlsgn(t)] }, a = 1.

A distribution function F belongs to the domain of attraction of a stable law

with O<a<2, denoted F C D(S(a,3,s)), if and only if there exist constants

0, and a slowly varying function L(x) such that 1-F(x) - ClXaL(x),

F(-x) c2x (x), as x --+0, where P3 = (c1-c2 )/(c1+c2 ). F belongs to the

domain of attraction of a Gaussian law (a=2) if and only if E[X2 I(IXI~x)] is a

slowly varying function L(x). F belongs to the normal domain of attraction of

a stable law, denoted by F C DN(S(a,1,.s)). if and only if F C D(S(a,,3,s)) with

L(x) = c for some constant c > 0. These are precisely the distribution

functions whose sample means (properly normalized) have limiting distributions,

i.e., F C D(S(a,13.s)) (respectively DN(S(a,13 .s))) if and only if there exist An

> 0 and Cn 6 R such that A (n -C ) converges in law, in which case the
n n n n

limiting distribution V. is S(a,P,s) and An = nl/aL(n) (respectively

A 1/a ).

When F 6 D(S(a,13,s)), it can be easily verified that the statements (A.2)

and (A.3) (ii) in Theorem A can be derived from Theorem 1. Namely there exist

appropriate scaling a and resample size m such that the bootstrapped samplen n

mean has asymptotic limiting distribution as given in Theorem 1, depending on

the resample size. On the other hand, if the bootstrapped sample mean has a

limiting distribution, then the limit, the scaling and the resample size

necessarily must satisfy certain conditions described as follows.

Theorem 3. Assume F C D(S(a,,s)) has infinite variance and assumptions

(1.0)-(1.2), (1.3) hold. Then {an satisfies

lim m a.a L = constant if rn/n -+ c
n n nn
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n n n n) = constant if m n/n -- 0.n_'4 nn f

Moreover, if a=2, then H is a nonrandom normal distribution.

Now we examine the performance of the averaged bootstrap with Athreya's

(1987a) data-driven scaling.

Theorem 4. If F C D(S(a,P,s)), a pe 2, mn = n, and Athreya's data-driven

scaling an (In ) = X n (the sample maximum) is used, then (1.3) holds and G(x)

has characteristic function

c1 exp(ft(1))

c1 + fl[I - exp(ft(x))]da (x)

where ft(x) = e -tX1-ita(x), a(x) = T(x) if a 1 1, a(x) = T(X)I(c x I l) if

a = 1, and the measure X satisfies for all ". 0,a

X a[X,) =c 1X X ',(WX] =c2a

Since pG is quite different from the characterisLic function of V., the

bootstrap fails even on the average with this scaling. Note that this

data-based scaling results in a bootstrap algorithm which uses no specific

features of the population distribution F other than the knowledge that it

belongs to the domain of attraction of some stable law. However with an

appropriate nonrandom scaling, the averaged-bootstrap algorithm can be improved

in the sense that G is stable with the same index as V but with generally

different skewness and scale.

Theorem 5. If F C D(S(a,P,s)), 1 4 a cF (0,2), m n and a is a nonrandom

scaling based on the population distribution as follows:

n PCX _> an ) )' 1,
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then (1.3) holds and G(x) is S(a,Pd2 (a),sd,(a)), where

e- O -k -a + 1 1 <a<2,

dl(a) k ! O<a<l,
k=l

r 2 1<a<2,
d2 (a) = 1 ed(a) O<a<l.

When a=1, G(x) is not Cauchy even with the above nonrandom scaling, and

its characteristic function has a form more complex than that in Theorem 3 and

is therefore not shown here.

Note that in each of the intervals (0,1) and (1,2), dl(a) is increasing,

infinitely differentiable with all derivatives positive and dl(O+) = 1-e- 1,

dl(1-) = 1, dl(l+) = 2/e, d1 (2-) = 1; see Figure 1 (c=1). Therefore the scale

of G is smaller than that of T.. The factor d2 (a) is also increasing on (1,2)

with d2(1+)=0, d2 (2-) = 1-2/e; see Figure 2 (c=1). Hence the skewness Pd2 (a)

of G is the same as the skewness P of V. for a E (0,1), and has the same sign

but is reduced by a factor of at least .736 for a C (1,2).

When F belongs to the normal domain of attraction of a stable law, the

bootstrap algorithm can in some cases be appropriately modified so that the

averaged bootstrap will work. The simplest cases are when O<a<l (so there is

no reduction in skewness) or when the skewness is known, e.g., in the symmetric

case. Then only a scale adjustment to the algorithm, depending on the index a,

is necessary; when a is unknown, an appropriate estimate may be used.

Theorem 6. If F E DN(S(a,P,s)), mn=n, either 0 < a < 1 or P = 0 and

1/ (OC 0)
1 ;da e (0.2), and a n(0 n [n d1(a(~) n ,where a n(I ) is an estimate
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of a satisfying ( -a) log n - 0. then (1.3) holds and C = 2 , both being

S(a, P,s).

For instance the estimate of a given in Hall (1982) works in Theorem 6.

Notice the skewness of G in Theorem 5, PG = Pd2 (a), is always smaller in

absolute value than the skewness P3 of V. when 1<a<2. Hence if prior to

bootstrapping we transform the original data into new data belonging to the

domain of attraction of a stable law with skewness Pd2 1(a), and if we then

appropriately adjust the standardization as in Theorem 6. using estimates of a

and P if necessary, we obtain a bootstrap algorithm which works on the average

provided 11I • z).

Theorem 7. Assume F C DN (S(a.s)). 1 0 a C (0,2), 113 d2 (a), and an.Pn are

consistent estimates of a and P, satisfying

(a -a) log n -- 4 if 0 < a < 1
nn-i

nl-1/a (a-a) -EO nl-1a(n-P) -- 0 if 1 < a < 2.

Transform the data 9 to Z as follows:n n

Zi b(a n o n ) Xi - b-(ann) Xi

where

= b+(a,1) = (1-P)[1+P3/d2 (a)], b- = b-(a,) = (1+3)[1-0/d2 (a)]

and consider the bootstrapped sample mean Tn = a1 i=I ( Y i - Cn), where
n n i= cjn

A rZ if a > 1,
A 2 1/anan= [ndl( )(1-pn)ln. cn 0 if a < 1,

nn Th
m = n, and {Yi= I are resampled from {Zi}i= 1 . Then (1.3) holds and G = 2.,
n i=1 i
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both being S(a,1,s).

For instance the estimates of a and P given by Zolotarev (1986) work here.

Up to now we have discussed in detail that when F C D(S(a,,s)) and

m n = n, the expected value G of the limiting distribution H is a-stable, with

possibly different skewness and scale from e., and how to make bootstrap

resamnpling work a.s. by using the averaged-bootstrap algorithm. The following

theorem shows, without any restriction on the resample size mn, that G is

a-stable if and only if F belongs to the domain of (partial) attraction of an

a-stable law.

Theorem 8. Assume (1.0)-(1.2) and (1.3) hold.

(i) If mn/n --+ c C (O,co], then G(x) is a-stable with 1 ;1 a C (0,2] if and

only if F C D(S(a,P,s)).

(ii) If mn/n --+ 0, then G(x) is a-stable with 1 4 a E (0,2] if and only if

F belongs to the domain of {mn)-partial attraction of an a-stable law

(F C {mn}-D (S(a,Ps)), i.e., A-1 (m -C ) converges in law for some A > 0n pn nm n nn

and CER).

In either case G(x) is Gaussian with mean zero and variance d(2,c) if

a = 2, otherwise

S(a, P, sd(a,0)) if mn /n- 0,

G(x) is S(a, Pd2(a,c), sd(a,c)dl(a,c)) if mn In c 6 (0,co),

Sea, 0, sd(a,ow)[2a 2 cos(ar/)] -1) if mn/n - ,

where

lima _aL(a) if m/n c C [0,0),
d(a,c) = n-4 nSlm nan 7m) if mn/n -0 o,

n-*0o
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16(<a-i> <at>

de T. E(k+l-c) -(k-c) -l, 1<a<2,

e c kS S le O<a(1,rl c eCk-k

k

k=1

e-C 00 k

d l (ac) kO - Ek+1-c 1<a<2,

d 2(a,c) =kxc-l,c

1 , O<a<l,

and x<P>=IxlPsgn(x).

Therefore if the resample size m satisfies m /n c C [O,w), the

averaged-bootstrap algorithm works with the appropriate standardization given

in Theorem 3, using appropriate adjustments on the skewness and scale

parameters as in Theorems 6 and 7, provided F 6 DN (S(a,p,s)). When mn/n

the averaged-bootstrap distribution eventually loses all skewness and becomes

symmetric. In this case the averaged bootstrap works when F C DN(S(a,O.s)),

again using appropriate standardization and adjustment oni the scale parameter

as in Theorem 6.

Figures 1 through 5 illustrate the behavior of the distortion factors d1

and d2, as functions of a C (0,1)U(1,2) and of c > 0. For fixed a, there is

essentially no distortion (i.e., dI Z 1 and d 2  1) when the resampling

proportion c is sufficiently small (although the rate of convergence may be

very slow, e.g., Figure 3); this agrees intuitively with the case mn/n + 0.

Distortion in the scale parameter can also be nearly eliminated by taking

m n 2/3, regardless of the value of a C (1,2) (see Figures 1 and 3). For

aC(1,2), the distortions in both scale and skewness increase dramatically as c

initially increases from zero; for c>1, these distortions remain fairly stable

(see Figures 3 and 5). In general there is less distortion as we approach the
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Gaussian case, i.e., a T 2 (see Figures 1,2,3,5).

5. PROOFS

5.1. PROOF OF THEOREM 1.

We prcvide the proof only in the case where F has finite mean; when the

mean of F does not exist or equals ±w, the proof is essentially the same, in

fact simpler since cn = .

Athreya (1987a), Theorem A, shows that (1.3) is equivalent to

(5.1) V (ti) . ... ,k} J=1,...,k}
n

for all k 1 1, ti C IR, J=1.... ,k, where

i tT* m
% n (t) := E~e nl,,n)=[ + 1pn~t)] n'

n n

with

m

pn~t -n j=i f t{a n(Xi Xn)}

(5.2) f + f )ft(x)dNn(X) n,eJ(t)+Jn,(t),
(5.2 =Ixl>e

ft~x) = eitX-l-itx, for any Borel set A C R,

m(5.3) Nn(A ) := -E e.I.{-~ -X )
n J=lA{an j n 

and for any x C R, Nn (x) := Nn([X,)) if x 0, and Nn(x) := Nn((-co,x]) if

x < 0. In turn (5.1) is equivalent to

(5.4) Theore), J=il .....nks ( -16 {lo byHthe Crl ..... d e

(see Theorem 5.5 in Billingsley (1968)), and by the Cram~r-Wold device, to
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k k
Ib4'J=)-i log TH(tj)

for arbitrary hI ..... h.

We find the necessary and sufficient conditions for k=1, i.e., for

%Pn(t) n-w log H(t) for fixed t 6 IR. The conditions and the proof are

essentially the same for any k.

In a series of lemmas we find necessary and sufficient conditions for the

convergence in law of all finite dimensional distributions (fdd's) of n,eJ(t)

and J n,(t) in (5.2), and then prove that all fdd's of their sum converge in

law if and only if those of both n,aJ(t) and J n,(t) converge in law.

We define ordered convergence in law, and in probability, of doubly

indexed random variables X as follows:
n, e

itXV-lim lim X n,-= X iff V t C IR, lim lim E e E~ et

e--iO n-o ek-3 n--P

P - lim lira X = X iff V 6 > O, lim lira P(nX-,-X{ > 6 ) = O.
a-W3 n-i n,e e-Wi n- n

It can be easily verified that many classical results for r.v. 's with one

index are applicable here for the ordered limit, such as: convergence in

probability implies convergence in law, Slutsky's Theorem, and the Central

Limit Theorem.

The first two lemmas provide the necessary and sufficient conditions for

the convergence in law of the fdd's of n, J(t) as n -- ' and then a --+ 0.

Lemma 1. For each fixed t X 0,

P - lim lim nJ(t)1.I t2x2dn)
H-a n-) onere na s -x nd dN -(x)

Hence all fdd's of n6J(t) converge in law as n -. wand then a --+ 0 iff
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mn

2 Mn -2 2(5.5) Ylxlex dNn(x) = - .a (X-n) I(allx- I  e)
J=1 n n i n

converges in law, as n --4 w and then e --+ 0, and the former limit equals -t2/2

times the latter.

Since Xn converges a.s. to the finite mean of F, and ma-2 --- 0 by (1.0).nn n--P

standard arguments enable us to delete Xn in (5.5). Therefore all fdd's of
n

J(t) converge in law if and only if n := X J  converges in law, where
na n~ J=l n,e

mn -22 1Xn, :Tn an Xj I(an Ix I F-).
n,a n=- j n i

Note that {X } form an infinitesimal array of independent r.v. 's, so wenNt 1Jn

can apply Central Limit Theorem 4.7 in Araujo and Gin6 (1980) to obtain the

following characterization.

Lemma 2. X converges in law as n -- o and then a -- * 0 if and only if

conditions (1.b) and (1.c) are satisfied. In this case the characteristic

function of the limit Z2 is

VZ (u ) = exp{iua2 + 0O (e iUx-l)dv(x)}.

Corollary. All fdd's of n,J(t) converge in law if and only if (1.b) and (1.c)

are satisfied, and the limit equals - L t Z.

Note from (1.b) that v M 0 when mn/n is bounded, because the event

XJ K ea n , _X_ > an 167T I eventually becomes null for any fixed positive

6. when a is sufficiently small. In this case Z= a2 a.s., while in general

Z -a2 is infinitely divisible with Levy measure v.

We now find necessary and sufficient conditions for the convergence in law

of all fdd's of J n (t). It follows from (5.2) that the sample paths of
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exp{,Pn(t)} (or exp{J, (t)}) are characteristic functions of infinitely

divisible laws with L6vy measures the corresponding sample paths of Nn(x) (or

N n(x)I(IxI>a)). We show in Lemma 3 that the convergence in law of all fdd's of

J n,(t) is equivalent to the convergence in law of all fdd's of Nn(x) . Hence

one can focus attention on Nn(x), which is much simpler than 'Pn(t) and

essentially equivalent to a sum of independent random variables.

Lemma 3. Under Assumptions (1.0) - (1.2), the following are equivalent.

(i) For all k k 1 and t, .... ,tk E IR,

V- lim ln {Jn,(ti), J=1.....k} = {J(t ), j = 1,....kj.
e-i0 n-p m

(ii) For all k k 1 and xl ....xk C R\{O ) ,

(N (x J), j=1,...,k} - N(xj), j=1,...,k}.

(iii) Condition (1.a) in Theorem 1 holds.

Under any of these conditions, the limit in (i) is given by

S_0 ft(x)dX(x) if mn/n 0,

Jt) = ]c5 ft(x)dN(x) if mn/n -- c (

0 otherwise,

where N is a Poisson random measure with intensity measure c-l .

Notice from Lemmas 2 and 3 that at least one of n,aJ(t) or J n,(t) will

have a nonrandom limit, for all different choices of resample size m n.

Therefore the sum Pn (t) will converge in law when both of them converge.

Lemma 4: Under Assumptions (1.0)-(1.2), (5.4) is equivalent to the convergence

in law of all fdd's of n,&J(t) and J n,(t), and if (5.4) holds then
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log H(t) = m lm n J(t) + lrm lim Jn a(t).
-iO n-P e-O n-fm

Proof of Lemma 1. Fix 6 > 0. Then. for each n and a < 36/It i we have

P r 2 dNn(x)

SP[ 1  (eIx2x ) itxil-t + 't 2x2 )d(x)l > 6 1xt 2 x2 (x ) 

P[ SIxIJe 6 t1dNn ( x ) > 6 SJxJK6 it x dN n (x)

K P[ t 2(_Itje-) S x 2dN (x) > 0 ) = 0,

because lei x - 1 - ix + x2/2 I K lx13/6 for all x IR.

Proof of Lemma 2. We first verify that {Xj , l j~n} form an infinitesimal

array. Indeed for fixed a and 6 > 0, we have by (1.0),

I In
P(Xl > 6) = P(anl lxl  m e. n a-2x2 > 8) K P( lxI > an/Sn/mn) 6 0.

Now by Theorem 4.7 in Araujo and Gin6 (1980), . XJ  converges in law
J=l ne

(as n -- o and then a --* 0) if and only if the following three conditions are

satisfied:

(i) there exists a L6vy measure v such that for all 0 K 6 < u with

v(61 = 0 = D(u).

lim lim n P(6 < X1  K u) = v(6,u];
e-0) n-Pm n,&

(ii) for all 6 > 0 such that v{6} = 0, there ;xists a2  0 such that
6

lIm limn E[Xn I(X1  < )]
-i n-%o n'e n ,

(iii) there exists a C IR such that



22

lim lim lim n Var[X 1 I(Xn < 6)] a 2 ;
-30 e- O n-. n , n ,

in this case the characteristic function of the limit is

2 1 2 2 iuxexp{iua - vi a + o(e -)dv(x)},

2 2 2
where a = lim6 0 a , which exists since a6 is monotonic (decreasing) _, 6 '1 0.

Conditions (i) and (ii) are seen to be the same as (l.b) and (l.c) in

Theorem 1, and (iii) is implied by (ii) since

n E[X I I(xI < 6)]2 5n E[X I 1 2 ---+ 0

n, a n,e n,e n-im 6 610
6-30

Hence a2 = 0, i.e., the Gaussian component in the limit is degenerate, and the

limit has ch.f. as shown. 0

Proof of Lemma 3. (ii) is equivalent to (iii): We will show that (iii) is

equivalent to

(5.6) (Nn[yl,w), Nn(-,-y2 ]) converges in law for all yl,y2 > 0,

since the multivariate argument can be similarly carried out to achieve (ii).

Again by a standard argument, we can drop Xn in Nn, so for any ylY 2 > 0,

UlU 2 C IR,

(5.7) Eexp{i(u 1Nn[Y1 ,)+u2Nn (-.-y2])}

Mn , n-1 -1
=Eexp{i n nL e 1=[uI(a nXJ j yd) + u2 I(a nX. j< y2

m n-1l -1n
=Eexp{i - [uI(a X yl)+ uni n 1 2(a y)}

[1+ exCp~iu ipfn/n) -l]P(an X~yj) + [exp(iu2m /n) -lJP(a IX -Y2)} ]n

n m
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Hence (5.6) is equivalent to

n[exp(ium /n) -1]P(anlX y) and n[exp(iumn/n) -1]P(anlX < -y)

converging for all y > 0, u 6 IR, which is equivalent to (l.a). Therefore (5.6)

is equivalent to (iii). Moreover (5.7) converges to

exp(iUlXEYl'w + u2X(--,-y 2]]} if mn/n 0,

exp{c- [exp(iu1c)-l]X[yl,0) + c- [exp(iu2c)-l1X(.-w,-y 2]} if mn/n-- ( ),

1 otherwise.

(i) implies (ii): For simplicity of notation we prove (ii) is implied by

the convergence in law of all fdd's of *n(t).

From (5.2) we can write, with gt(u) = eitu-1

*n(t) = f: ft(x)d n(X)

= ~[itJ g (u)du] dN (x) + .f2,,-itSfO g (u)du] ~N (x)0 0 to n tc u n

- itf gt(x)Nn [x,)dx - itj'.gt(X)N n (- ]dx

(5.8)2 itx) : _t2C*

where

S Nn[u,w)du, x > 0,

(5.9) Mn(x) = Nn-uu x < 0.

Thus 4 (t) is the Fourier transform of Mn(x) , which is piecewise linear,

continuous with compact support.

It is clear from (5.2) that exp(Pn (t)} is a (random) characteristic

function of an infinitely divisible law with (random) L6vy measure N , and (i)

implies the fdd's of Pn(t) converge in law to the fdd's of log H(t) =: (t).

If the %' s were nonrandom or more generally if the convergence were a.s.
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instead if in law, the convergence of their L6vy measures in (ii) would follow

immediately from classical results.

In order to establish (ii) in the current case, we apply the embedding

theorem of Skorohod (1956) to the 'Ptn's and P, whose sample functions are in

C(R). In this special case of processes with continuous paths, this implies

that there exist stochastic processes {4n(t)}n~l and p(t) on some probability

space (Q, ,P), such that: the fdd's of 4and 4 are the same, and so are those

of 4n and Pn for each n, and the sample paths of ( t) and P(t) are with

probability one in C(IR) (therefore their corresponding induced measures on C(IR)

are the same), and

a S.(5.10) nt)n- o2 {t) for all t.

Therefore there exists 1C Q with P(i) = 0, such that for all w E\Q I ,

(5.10) holds.

We will show that each %n has the same form as ', so that exp{in} is the

characteristic function of an infinitely divisible law with L6vy measure Nn

having the same fdd's as N n . Then (5.10) will imply a.s. convergence of Nn

therefore the convergence in law of all fdd's of N .n

Since , and - have the same induced measures on C(R), in order to
n n

establish that *nhas the same form as , , determined by (5.8) and (5.9), it

suffices to show that the inverse of the map that defines 4,n or n from Nn via

M is measurable. We now proceed to discuss this.n

We first formalize the two maps from N to M , and then from M ton n n Pn

Let A (or X) be the set of all discrete signed measures (or discrete measures)

on IR with finitely many atoms with the topology of weak convergence. Let 9 be

the set of all functions that are piecewise linear with finitely many segments,

continuous, with compact support. 9 is a measurable subset of C(IR) with the
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uniform topology. Define T I -: A by

S C v[y,w)dy, x ' 0,
(Tl10 Mx =

( ( ' v(-'.yldy, x < 0,
for all v C A. T is one-to-one and onto and its inverse T: 9 --+ A is1 t1

defined by (T1 f)(a,b] = (Bf)(b)-(Bf)(a), where B,B q: 9 --+ K(IR) are given by
1

(Bf)(x) = lim (B f)(x), (B f)(x) = - [f(x+p)-f(x)].
1710 7 17

B is a measurable map since B is continuous for each fixed > 0. Therefore

Tl is well defined and measurable.

The relationship (5.8) is the Fourier transform T2: CO(IR) --+ C(IR), where

C(R) (or CO(R)) is the set of all continuous functions on M (with compact

support). T 0 (IR)} = T2 {Um=iCo[-mm])} = U WlT2{Co[-mm]} is a Borel subset of

C(R), since the sets Co[-m,m] of all continuous functions with support on

[-ra,m] are closed subsets of C(R), and T2 is continuous on each Co[-m,m] as

11T2 (fl)-T2 (f2 )o S Ifl (x)-f 2 (x) Idx 2m If1-f2 lw.

Hence we can define the inverse map T12: T2{Co(IR)} --+ Co(IR) by

(T 1 f)(x) = lim h f j itx f(t)exp{- E 2t2Idt =: lim (Af)(x)

for each f C T2{C0 (IR)} (see e.g., Rudin (1966), S 9.7). T2 is Borel

measurable since each map A is continuous on T2{ 0 (IR)}:

A~ 2~ 122 1"IA (f ) -(f),I 1 ai -f exp{- a t )dt Ifl-f 21{w
a (eeow e If-e 2a We e Sa 1

Therefore we have
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T1  T2

K C A 11-1) 9 C CO(R) 1-1 T2{Co(IR)} C C(R).

1

Then B = T2{TI(N)} = (T2 1)-I{(T1 l)-I(W)} is a measurable subset of C(IR). Since

the paths of all ns are in B with probability one by (5.8) and (5.9), we have

'Pnn1 = P o Pn (B) P 0 Pn I(B),

which implies *n(Ow) belongs to B a.s. (P). Thus there exists go C Q with

PO O)= 0, such that for all i C \0, we have

N(°,w) := T1
1{T2

1 *n(.,])]} 6 X, n = 1,2....

i.e.,

n(t) = f dft(x),nX) ,  n=1,2....

Therefore for all w C Q\(11UO) and all t, we have

(5.11) exp{,ftdn} = exp{nP(t)) n exp{~(t)}.

Applying the classical result, the Levy measures Nn of exp{n (t)} must

converge a.s. (P) to the L6vy measure N of exp{ (t)}.

Now notice that N and N have the same fdd's because for all Boreln n

subsets A of K(IR)

P(Nn { A) = ( T2 1)-ICT 1)-IA)}) = P E(T21){(T1 )-IA)}) = P(NnC A).

Therefore for all xl...xk C IR\{O},

(Nn(Xl) .... N~Xk) =(~)..k)) a.~ -- " M NXl'"Nk)

which implies (iii) by the previous argument. Hence N = N for some Poisson

random measure N with intensity measure X. Since N is a random L6vy measure,
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1 2 12
S x dl(x) < w a.s. (P) and thus Sjx dN(x) < w a.s. (P). Therefore the form

of its ch.f. implies that S1 x 2dX(x) < w, and hence X is a L6vy measure.

(ii) implies (i): We write

Jn.(t) = SIxM ft(x)dNn X) + SM>Ixl 6ftx)dNn (x) = : JnM(t) + Jn,e,M(t)"

For the first term we have

IJnM(t) l< 2ltljjxj>M IxldNn(X)

n m -1
21t, . -n a IX -X II(a Xj-Xn I M)

J=1 n n n n n

n mn
21tI I -Ra Ixj I I(aLIX.I M) 21t1 I wj

J=1 n n J=1 n,M

because by a standard argument we can drop the sample mean. {WjM}.I is an

infinitesimal array as n -+ m and then M - co, since for any 5 > 0,

P(W 1,> 6) = P(IXI anM. IXi ,an/m) P(IxI > aM) -+ 0.

Therefore, applying the degenerate version of the C.L.T. (Lo6ve (1977),

p. 329), we have

n

() P - lim lim 2 W - 0
M --vO n--* j= 1 n,M

if and only if the following three conditions are satisfied:

(a) lim limnEw I(W )] =0 for some 6 > O,
M-- , n- * n.M M'

(b) lim lim n P(W1 > 5) =0 for all 5 > 0,
M-P n-w n ,M

(c) lim lim n Var[W 1 I(W 6)] = 0 for some 6 > 0.
M-n n--PnM
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It can easily be verified that (a) and (b) are equivalent to assumptions

(1.1)-(1.2), and (c) is implied by (a) due to:

VrW1 I 1 6] [W1 I( 1 2 6EW1 I(1
nM n, n. n . n, ) n .E.M IW,

It follows that (*) holds. Hence the fdd's of Jn(t) converge in law (as n-m
Jn,a 6

and then a - 0) if and only if those of Jn, ,M(t) do (as n-*o, then a - 0, and

then M -*o), and their limits are the same.

Now ft(x) is continuous and bounded on [-M,M] for each fixed M > 0, hence

the convergence in law of all fdd's of Nn implies that of Jn. as n - 0,

e - 0, and then M -+co:

*nMt -Z f SN f dN T t)
n-., OxI<M t lx<Mt)6 j Jt). t

Proof of Lemma 4. (5.4) implies the convergence in law of all fdd's of N, and

hence of Jn (Lemma 3). Notice

'Pc~t) Pn~t) = e C l + f lxl>6 )ftli =: n.j(t) + Jne(t),

where the fdd's of *n(t) converge a.s. (-P) to those of P(t) (see Lemma 3).
Since N converges a.s. (IP) to N, the L6vy measure of exp{(-t)}, Y (t) will

converge a.s. (P) as n - and then e --* 0 because 9n(x)I( Ixl > e) is again a

L6vy measure for fixed e > 0, and

lim lim jn, (t) = lim f ft dN = ff tdN a.s. (P).
e- n-P 6- 1x I>e t

Therefore n,3(t) = n (t) - ,(t) converges a.s. (P) as n -- + and then

e -- 0 to (t) - JftdN. (Note P(t) may have a random Gaussian component

- 22(w) which distinguishes P(t) from fftdN). Furthermore,

n,-Jet) = x f t dN n IxI6 f t dn n ,et)
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since N and N have the same fdd's for all x C R\{0}, and ft(0) = 0.

Therefore the fdd's of n~eJ(t) must converge in law.

Conversely, if the fdd's of n~eJ(t) and J n,(t) converge in law, then so

do those of their sum n,&J(t) + Jne(t), since: In each of the two mutually

exclusive cases (i) mn/n --+ c C [Ow), and (ii) otherwise, either n,&J(t) or

J n,(t) converges in law to a nonrandom limit, and therefore converges in

probability, thus ensuring the convergence in law of the sum by Slutsky's

Theorem. 0

5.2. PROOFS OF THEOREMS 2-8.

Proof of Theorem 2. Since for each fixed x E IR, 1Hk (x) - H(x), and
n

0 1Hk , H K 1, it follows that EHn(x) = ElHk (x) G G(x). On the other
n n

hand, by the inequality of Hoeffding (1963), for all e > 0,

P(I (x) - Efc(x)l > a) = P( ,j EjHk (x)] > )

n J=1 n n

2exp{-2en a} 1/n 2

for sufficiently large n. The Borel-Cantelli Lemma implies a.s. convergence of

Hn , and uniform convergence follows in the standard way. 03

Proof of Theorem 3. Put x(t) = 1--F(t)+F(-t) for t > 0.

(i) a = 2. We have (Feller (1966), p. 545)

(5.12) lim t2 t) _ =-= O.t-% EX2Il( IX I t)] a

Case (a): mn/n -+ c C [O,o0). (l.a)-(l.c) imply

mn (any) n-4o)XNyW) + X(-,-y],
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ma72E[X2  IJxi < a)] e m aL(a ) a2

&-- O

These imply X 0 by (5.12), and mak a) a2 (>0)

Case (b): m/n -- co. Put b = a'7m-. Thenb n - by (1.0). Alson n n nn

(1.a)-(I.c) imply for all 6 > 0. n(b ) -n v(Z.c), and

a 2=lim M ak2XI(IXI b Nr )=lim m a2LbV)=lim fbnL(bnVZ) =lim nbn- L(b~)
n-n nn n.-n n n n--n n n-- n

Again using (5.12), we have v ,- 0 and nbn2L(bn) ) a2  0. In either case,

H is Gaussian.

(ii) 0 < a < 2. Case (a): mn/n --+ c E [O,w). (l.a) implies

m (yan)-aL(a y) converges for all y > 0; thus mnacL(an) -+ constant (Q 0).

Case (b): mn/n - . (1.b) implies n X(bnV) 1c +c2 )n(bnV5) -L(bn Z)

converges for all 6 > 0. 03

Proof of Theorem 4. By Athreya (1987a),

pG~t) = Eexp{J'0 ft(x)dN(x)},

where N(A) = N'(AT), N' is a Poisson r.m. with intensity Xa, and T is the last

jump of N'. Hence

=G(t) = exp{ft(1)} Eexp{f(cS ,)ft(x)dN(x)} : exp{ft(l)} (t).

It can be shown that, given T, N is a Poisson r.m. with intensity measure

(Xr) = T-(X a(x), and that T has max-stable distribution for which

Eexp{uT-a} = Ca J0 e~xp -a a y [1cl u]-1

if Re(u) < c1. Hence

f(t) = E [ E {exp{ ft(x)dN(x)} I TC-o ,1)
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- E exp{T-aS 1 [exp{ft(x)}-l] dX (x)}

c1  - , [exp{ft(x)}-l] d(X) -1

since the real part of the last integrand is 0 < c1. 0

Proof of Theorem 5. In this case, Athreya (1986a) showed

VH(t) = exp(fJft(x)dN(x)}.

where N is a Poisson r.m. with intensity Xa . Therefore

(pG(t) = exp( J'0, Eexp{ft(x)}-ld\a(x) }"

When 1 < a < 2, we find

-logpG(t) = aEcls 0 + c2J0 ](1 - exp{ft(x)}) dx
0 2 1I 1+a

= ta du
(Cl {1 - expEcosu -1 +i(sinu- u)sgn(t)] }-T

u

du

+c 2f0 {1 - exp[cosu -1-i(sinu - u)sgn(t)]} .a
U

= Itla a(c +c2 ) 1- i - 2 sgn(t)]1 2[1 a cl1+c 2 snt

where

du
a = a S; [1 - exp(cosu- 1)cos(sinu - u)] 1+a

u

= a I exp(cosu - 1)sin(sinu - u) du

e0~ cs 1+a

ui

Integrating by parts and then using the series expansion of exp{e iU}, we obtain

r(2-a) axp )k a
ib = (a-l)e { -2 cos 2-- exp(ik)[ k=l (k+l)!
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hence b/a = tg(air/2)d 2 (a). Since a(cl+c 2 ) = sdl(a), P - (ci-c 2)/(ci+c2 ),

s = (c1+c2)r(2-a)Icos(a7r/2)I/(a-l), it follows that

PG(t) = exp{ -sdI(a)Ita[ 1 - ipd2 ( a)tg(acr/2)sgn(t)] }.

The proof for 0 < a < 1 is similar with a - ib = e-ialr/2F(1-a)dl(a). 0

Proof of Theorem 6. If a = [ndl(an n then we have
A

-1-
-1 nl/ exp{ (aan)-(an-a)log n ) d I  (an ),- 1/n1/an- 1/ ()

n n= n4

for d11/a (a) is continuous over (0,1). Therefore, for A = [x,w), we have

P[Nn(A) = k] = P[a nn(X k+l -Xn x. an (x k X) X]

pa:1 ni/a -a(X -1 1/a n-1/

P n,n-k+l Xn) x, a n n - Xnk n

P(N(A) = k),

n--1

by Slutsky's Theorem, where N is a Poisson r.m. with intensity Xad1 (a).

Therefore it can be shown (see Proposition 1, Athreya (1987a)) that

P - lim lim n, J(t) = 0, P - lim lim Jn,M(t) = 0.
6-30 n- n, M-im n-P

nt - Sf t(x)dN(x ) .
'pn~(t)n-

and similarly for their fdd's.

Applying the proof of Theorem 5, we find

0G(t) = exp{ -sd11(a)d1(a) Itla[l - iptg(a7r/2)sgn(t)] }.1

Proof of Theorem 7. Since X = X+- X is in D(S(a,1,s)), it follows that
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Z = b+X+ - b-X- is in D(S(ajz,sz)), where

PZ = (clbt-c2b-)/(clb++c2b- ) = 3/d2'

sZ = S(C1b++c2b-)/(cl+c 2) = s(1-I2).

Note that

Sn c(t) -- nL,. P- -1 ft[an1 c(ZJ-zn) In

converges in law if and only if

(5.14) f [anIcZ -
n= A

converges in law. Notice {Z }J=1 are no longer iid due to the estimates an and

n which depend on the entire sample n. Hence we must show that (5.14)

asymptotically behaves as when a and P3 are known; then we can handle the

problem similarly as in Theorem 5. The arguments are as follows.

Let Zoi = b+X -b Xi Zon =bX b-X-. Then usingi i' n

IltCx)-ftcy)I 2ItI~x-yl , riting f or *C(a 43), we hae

[~.ita - (Z-)] 1 f [a -1(ZOj~n)

J=n t= nKInJ=K 2ltl a=z Z-Z -Zoj+Zcnl

2Ital{lj+-b+I e 1 Ix -x I + Ib- " Ix X

(5.15) n a1nni/a) l/a{ +-b+ -X+ Ibn-b- IY X-} 41t1(.5K alnn J=1 j n J=1 j

The first factor converges in probability to [dl(a)(1-P2 ) - 1/a using a similar

argument as in Theorem 6.

When O<a<l, the terms b+-b 1. bn-b- converge in probability to 0
n n

because a n, Pn are consistent and b (aP) are continuous; and the terms
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n 1? X+, n - /a =I X- converge in law since +,X- also belong to a domain of

attraction (with the same index a).

When 1<a<2, the terms n =I X+, n-1 = X converge a.s. by the SLLN; and
J= j, J=1 J

the terms nl-1/alb+-b+I, n l-/albn-b-j converge to zero in probability since
n n

A+ + 1 AA A

b n-b = - n{ dl-P-Fn-d2 (an)n]Cn-P) - 13(1-13)[d2 (a)-d2 (a)]I/d 2 (a) I,
Id d2 (a)

A; - - 1 A,-A A
b -b = A {-[1+I+I-da)(-) + 1(l+p)[d (a )-d (a)]/d (a)

n-/a and ndn

a 43 are consistent estimates of a,J with rate n 1 - 1/ g and d2 (-) is

differentiable on (1,2).

Therefore (5.15) converges to zero in probability, and (5.14) converges in

law if and only if =1 ft[an1 (Zoj-Zon) ] converges, and they have the same

limits. We can now use arguments similar to those in Theorems 5 and 6 on

_Zoj~n=I to establish the result. 03

Proof of Theorem 8. Suffiency of both (i) and (Ii): Assume F E D(S(a,P,s)),

or D (S(a,p,s)) when m /n -- + 0.

Case (1): m n/n --, c E [O,0). Then by Theorem 3, (1.3) implies that

lim m a'aL(an) = d for some d 0, and G = H, which is normal with a 2=d(2,c)
n- n n

when a = 2; while when 1 X a C (0,2),

a2 = lim lim m a-2 E[X 2I( IX i an6)]

e- 0 n-on

= ma-2 (a 2 L(a 6) = lima 2 a lim maL(a = 0.
e-i) n-** n -30 n-P nn,

Also by (l.a),

X[y,co) = lim mnP(X > ya) = lim cm n n(ya)aL(yan) = c1 -dy-,
n-a m n-

and similarly X(-co,-y] = c2dY-a, so that X = dX Hence by (1.5).
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exp (df ft(x)dx)1 if mn/n - 0,
(PG~t) = -I~d =

expfdc S_ [exp{cft(x)}-l~dXa(x)} if m nn -- c C (Ow);

exp{-dsltla[l - iPtg(ar/2)sgn(t)]} if mn/n / ,

exp{-dsdl (a,c) Ita[1 - ipd2(a,c)tg(ar/2)sgn(t)]} if m In /h c C (0,60)

using arguments similar to those in Theorem 5. In fact Theorem 5 is a special

case of Theorem 8 with c = 1, d = 1, dl(a) = dl(a,1), and d2(a) = d2(a,1).

Case (2): mn/n -- c. Then by Theorem 3, lim nbnLbn) = d for some d 0,

where b = a Y . Moreover G = H is normal with a2 = d(2,c) if a = 2, while
n n n

when 1 A a E (0,2) we have from (l.b) (with O<6<u such that v{6} = 0 = vuj),

v(6,u] = lim lim n P(bv < lXi J bn Z)
a-)O n-*o

= lim (c1+c2)n[(bn vr')-%(b n) - (b nv )-aL(bn) = (c l +c 2 ) d ( 6 - a/ 2 - u- a/ 2 )

n-iw

Condition (1.c) can be written as

a2 = lim lim ma 4X1(IXI bv)1
a- n- n n

lim nb-2 2-a r- 1-a/2 lim n n 1-a/2 0.

nb -- (mn nn n,, n d

Therefore by (1.5), oG(t) = Eexp(- %t2W}, where

a ( i t x 1 dx
Pw(t) = exp{ d(cl+c2 ) (e f -1) 1+a/2

x

which is the ch.f. of S(a/2,1,ds). Hence it follows that

G(t) = exp {-ltlasd/[2a/ 2cos(X/4)]}.

Necessity of (ii): mn/n --+ 0. If a = 2, it follows from the expression of pG
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in (1.5) that X- O, i.e., for y > O,

mnP(anl X > y) -- + 0, mnP(anl1X < -y) -- + 0.

Also there exists a 2 such that

a2 =lim lim u nan
2 E{X 2 I(JX [ i ean)}.

e-i0 n-i n

Hence F C D p(S(2,0,s)) (Ibragimov and Linnik (1971), Eq. 2.6.12-2.6.13, and

Feller (1971), p. 555).

If 1 1 a C (0,2). then a2 = 0, and X is the L6vy measure of an a-stable

law, which means there exist constants cI , c2  0, such that

X[y,CO) = cly - X(_.,_y] = c~ya

Thus by condition (1.a),

lim mnPa-1X > y = lir mnP(an1X < -y) = c2 y a

n- n n-0 n n

and by (1.c),

lim lim Ma-2 ELX2  (Ix e a 2 = 0.6_4) n-4 nn

Again these imply F C D p(S(a,.,.)) (see Ibragimov and Linnik (1971), Eqs.

(2.6.3)-(2.6.5) and Feller (1971)).

Necessity of (i): Case (1): m n/n -+ c C (0,00). The argument for a = 2 is as

in the necessity of (ii). Now if G is a-stable with 1 - a E (0,2), then by

(1.5),
*(t)~ ~ :=lgq_()= 2 2 -1

i(t) := log G(t) = - 2t a + c [exp{cft(x)} - 1]dX(x)

= -Itlas{1 - ijtg(ar/2)sgn(t)}.

First we show that a2 = 0. For t > 0, we have

,(5.16) t2- a2 + C-1t-a 0l - exp[c(costx-1)] cos[c(sintx-tx)]} dX(x) = s.
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Since 1- expEc(costx-1)]cosEc(sintx-tx)] 0 for all tx 6 R, and s e (O.Co),

letting t --* w in (5.16) implies a2 = 0, for t 2-a_4 c. Now exp{P(t)} is the

ch.f. of an a-stable law, therefore it satisfies n#(t) = %P(n /at), i.e.,

CO -1/a
n r.[exp{cft(x)) - 1] d(x) = J%[exp{cft(x)j - 1] dX(n x),

where X(x) = X[xo) if x > 0, X(--ox] if x ( 0. Therefore n X(n /ax) = X(x).

By the monotonicity of X, we can conclude that ?X(y) is proportional to y

-<p<+Ow, (Feller (1971), VIII 8, Lemma 3), and p has to be -a. Therefore

F C D(S(a-.,.)) by using similar arguments as in the necessity of (ii).

Case (2): mn/n --+ . Since G is stable, and (1.5) implies that it must

be symmetric, we have

E exp(- 2- t2 (a+W) = exp{ -soIt~a, .

which implies a2 + W - S(a/2,1,sl), since the left hand side is the Laplace

transform of A+ W at t2/2. Therefore

2 2 eitXl
Eexp{it(a 2  W) = exp= it 2 + JO(e )dr(x)} = exp-s I itIa )

Hence a2 = 0 and v is the Levy measure corresponding to S(a/2,1,sl), i.e.,

lim n P(IXI > bn6) = c(r)-a.
n-P

and with a similar argument as in Case (1),

0 = a2  = lim lim nb- 2 E[X2 I(IXI K bnv6)].
6--) n-w

Hence FIXI C D(S(a,',)), which implies F C D(S(a,...)) since

F C D(S(a,*)) iff t 2 Vt)_ 2 2-a

E(mnI(XTt) t-_ a

(see Ibragimov and Linnik (1971), Theorem 2.6.3). 13
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